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Abstract. In this paper, we apply the bootstrap method to study the

standard deviation for bone mineral density of Vietnameses women. This

result is important in recognizing seriousness of the osteoporosis.
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1. AN INTRODUCTION

In order to diagnose osteoporosis for Vietnameses women the World Health

Organization (WHO) established the following criteria for determining the T-score:

(1.1) T − score =
bmd− bmdp

sd

where bmdp is the peak bone mineral density of Vietnameses women and sd is the

standard deviation of the peak bone mineral density of Vietnameses women. The
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L. H. Quang, N. V. Dinh, N. B. Duc, N. H. Binh, N. T. Anh, L. T. Thanh, and Bo von Schoultz. We

would like to express our sincere thanks to them and hope to develop more fruittful cooperations

with them.
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problem we study in this report is to determine the bmdp and sd using the boot-

strap method . Bradley Efron (1974) revolutionized the field of statistics with his

invention of the bootstrap. The bootstrap broadly refers to a continually growing

collection of methodologies in which data are resampled to incorporate into sta-

tistical inference the information contained in the data regarding their probability

distribution. Conceptually simple yet computationally intense, the bootstrap owes

much of its rise in popularity over the last 20 years to the advent of the personal

computer over the same period. As computers become faster and more powerful,

the bootstrap becomes a more practical and indispensible tool for the data analyst.

It can solve many problems including the problem of osteoporosis for Vietmese

women that we can’t solve before.

2. BOOTSTRAP OVERVIEW

We begin the study with the following definitions of the bootstrap samples and

their distributions.

DEFINITION 2.1 (Bootstrap sample). A bootstrap sample x# = (x#
1 , x

#
2 , . . . , x

#
n )

is a ramdom sample of size n where each x#
i is abtained with probability 1/n by

drawing with replacement from the original sample x = (x1, x2, . . . , xn).

DEFINITION 2.2 (Bootstrap distribution). Let θ#i
n = θ#

(
X#i

1 , X#i
2 , . . . , X#i

n

)
denote a random bootstrap sample, (i = 1, . . . , B). The function G#(t), (−∞ <

t <∞), defined by

(2.1) G#(t) = P
(
θ#
n < t

)
=

number of
{
θ#i
n < t

}
B

is called the empirical bootstrap distribution.

2.1. Standard error. Let us collect many independent samples of the same size

from the same population. For each sample we compute the value tn of statistics
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θn = θ (X1, X2, . . . , Xn). Then, the following question arises: If we take many

samples, how do the values tn change?

Specifically, if we take N samples from population, then we will have N val-

ues tin, (i = 1, . . . , N). The standard deviation of these N values tin is called the

standard error and denoted by

(2.2) se (θn) =

√
1

N − 1

N∑
i=1

(tin − t̄n)2

where t̄n = 1
N

N∑
i=1

tin. Therefore the standard error measures the magnitude of

variability of tin.

In many settings, we have no models for population. We then can’t appeal

to probability theory, and we also can’t afford to actually take many samples. In

applying the bootstrap method we first take one sample, then we have as thought it

was the population and then, we take resamples from it to contructs the bootstrap

distribution. The following steps are important:

Step 1: Generate B bootstrap samples x#1, x#2, · · · , x#B .

Step 2: For each bootstrap sample , compute t#i
n = θ

(
x#i

1 , . . . , x#i
n

)
.

Step 3: The bootstrap estimate of the standard error is

(2.3) se# (θn) =

√
1

B − 1

B∑
i=1

(
t#i
n − t̄#n

)2

where t̄#n = 1
B

B∑
i=1

t#i
n .

2.2. The bootstrap t interval. Let θ is a parameter of interest and θ̂ is a plug

in estimate of θ. In addition to point estimate θ̂, we may also be interested in

constructing an interval to estimate θ with a desired confidence level. If α is a

number between 0 and 1, typically it is taken as 0.01, 0.05, or 0.1,. A (1 − α) ×
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100% confidence interval can be as the following

(2.4)
(
θ̂ − z(1− α/2) · ŝe; θ̂ + z(α/2) · ŝe

)
where ŝe can be either a bootstrap estimate or any other reasonable estimate of

standard error of θ̂. And z(α/2) and z(1−α/2) are 100 ·(α/2) and 100 ·(1−α/2)

percentiles, respectively, of the distribution of random variable Z = (θ̂ − θ)/ŝe.

Note that the random variable Z used here may not necessarily have a standard

normal distribution.

Whenever the normality holds, z(α/2) and z(1−α/2) values can be replaced

by the standard scores from the standard normal table. For instance, z(0.025) =

−1.96 and z(0.975) = 1.96. And thus, 95% confidence interval for θ will be

constructed as
(
θ̂ − 1.96 · ŝe; θ̂ + 1.96 · ŝe

)
.

When Z can’t be assumed to be standard normal or a t-distribution, the boot-

strap can be used to obtain an accurate interval. Here is the produce:

Step 1: Generate B bootstrap sample x#1, x#2, · · · , x#B .

Step 2: For each bootstrap sample i, compute θ̂#i = θ
(
x#i

1 , . . . , x#i
n

)
and the

estimated standard error of θ̂#i denoted by ŝe#i

(2.5) Z#i =
θ̂#b − θ̂
ŝe#i

Note that when θ̂ is not a sample mean but a more complicated statistics, bootstrap

resampling may be used to estimate ŝe#i. for each bootstrap sample i. this resuals

in a nested bootstrap resampling.

Step 3: The α/2 quantile of Z#i is estimated by the value z(α/2) such that

(2.6)
#
{
Z#i < z(α/2)

}
B

=
α

2

and the value z(1− α/2) such that

(2.7)
#
{
Z#i < z(1− α/2)

}
B

= 1− α

2
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Step 4: Constructing the bootstrap t (1− α) · 100% confidence intervals:

(2.8)
(
θ̂ − z(1− α/2) · ŝe; θ̂ − z(α/2) · ŝe

)
2.3. The bootstrap percentiles. The interval between the α/2 th and (1−α/2)

th percentiles of the bootstrap distribution of a staitstics is a (1 − α)% bootstrap

percentile confidence interval for corresponding parameter.

3. REGRESSION MODELS

Bootstrap resampling for regression models is a generalization of the boot-

strap process described above. Rather than sample scalars, we sample a vector of

value for each observation and compute the regression coefficient estimator for

each bootstrap sample. Consider the regression model, Y = Xβ + ε, where X is

an n× (p+ 1) matrix of the explanatory variables (including a column of one for

the constant term), β is a (p+ 1)× 1 vector of population regression coefficients,

ε is an n× 1 vector.

With standard method, if we want to make any confidence intervals or perform

any hypothesis tests, we will need to assume distributional form for the errors ε.

The usual assumption is that the errors are normally distributed and in practice this

is often, although not always, a reasonable assumption. We can reduce this assump-

tion by use bootstrap method. The bootstrap estimates of the standard deviations

of the coefficient estimates are

(3.1) se#
(
β̂j

)
=

√
1

B − 1

B∑
i=1

(
β̂#i

j −
¯̂
β#

j

)2
, j = 0, . . . , p

where β̂#i
j the value of the bootstrap estimator for βj in the i th sample, and ¯̂

β#
j is

mean of bootstrap estimates for B bootstrap sample. The bootstrap is also useful

in forming confidence interval. The simplest nonparametric bootstrap confidence

interval is known as the percentile interval.
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4. AN APPLICATION OF BOOTSTRAP METHODS IN ESTIMATING THE
OSTEOPOROSIS FOR VIETNAMESE WOMEN

In this section we will discuss the application of bootstrap method in estimat-

ing the bone mineral density of Vietnameses women. A bone mineral density test

(bmd) is the best way to determine bone health of women after menopause. People

who have low bmd have hight risk of fracture. Every standard deviation decreases

in bmd then risk of fracture increase from 2 to 3 times. Osteoporosis is most com-

mon in women after menopause, when it is called postmenopausal osteoporosis

bone mineral density tests are performed to determine whether a patient has osteo-

porosis or osteopenia, a low bone mass that puts her at risk for osteoporosis. To

make this determination, the technologist will calculate the patient’s T-score. The

World Health Organization (WHO) established the following criteria for determin-

ing the T-score:

(4.1) T − score =
bmd− bmdp

sd

where bmdp is peak bone mineral density of Vietnameses women and sd is stan-

dard deviation of peak bone mineral density of Vietnameses women. The WHO’s

report defined diagnostic categories based on bmd measurements as follows:

• Normal: T-score above -1.

• Osteopenia: T-score between -1 and -2.5.

• Osteoporosis: T-score at or below -2.5.

Our main purpose is to estimate the bmdp and sd using the data provided by a

group of medical doctors. First, we explore the relationship between bmd and age

of Vietnameses women. The model that we choose has the form

(4.2) bmdi = β0 + β1age
1
i + β2age

2
i + β3age

3
i + εi, i = 1, . . . , n

where n is the number of observations. Here we use R for statistical data analysis.
The OLS estimator of the regression coefficients:
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>reg3 <- lm(bmd ˜ age + I(ageˆ2) + I(ageˆ3))
>summary(reg3)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.004e-01 7.323e-02 5.468 9.17e-08 ***
age 4.499e-02 7.691e-03 5.849 1.22e-08 ***
I(ageˆ2) -1.155e-03 2.327e-04 -4.963 1.13e-06 ***
I(ageˆ3) 8.159e-06 2.128e-06 3.834 0.000152 ***
---
Signif. codes:0‘***’ 0.001‘**’ 0.01‘*’ 0.05‘.’ 0.1‘ ’ 1

Figure 1. The relationship between bmd and age

Next , we use bootstrap method to estimate standard errors and interval con-

fidence for the regression coefficients. The table 1 bellow gives a comparison of

standard errors of the two methods.

Table 1. Comparison of standard errors

Coefficient
OLS method

se
(
β̂i

) Bootstrap method

se#
(
β̂i

)
β0 7.323e-02 7.227e-02
β1 7.691e-03 7.337e-03
β2 2.327e-04 2.341e-04
β3 2.128e-06 2.063e-06

For each coefficient, the OLS standard errors are approximately equal to the

bootstrap standard errors. This follows from the fact that the bootstrap histogram

is of the standard normal shape. The Table 1 and Table 2 give the point estimate

and interval confidence estimate for each coefficient from the two methods.

Classical confidence intervals are constructed under the assumption that the

distribution of coefficient estimator is symmetic, i.e. the upper and lower bounds

are of the same distance from the coefficient estimate. The bootstrap confidence in-

terval can capture asymmetries in the distribution of the estimator so that the lower
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Table 2. Compare point estimate

Coefficient OLS method Bootstrap method
β0 4.00e-01 4.01e-01
β1 4.49e-02 4.49e-01
β2 -1.15e-03 -1.15e-03
β3 8.15e-06 8.13e-06

Table 3. Comparison of interval confidence estimate

Coefficient OLS method Bootstrap method
β0 (2.56e-01; 5.44e-01) (2.74e-01; 5.30e-01)
β1 (2.99e-02; 6.01e-02) (3.00e-01; 5.97e-02)
β2 (-1.61e-03; -6.97e-04) (-1.58e-03; -7.02e-04)
β3 (3.97e-06; 1.23e-05) (4.06e-06; 1.21e-05)

bound can be further or closer to the coefficient estimate than the upper bound.

In this case, the bootstrap confidence intervals are similar to the OLS confidence

intervals because the distributions of bootstrap estimates have a normal shape.

Figure 2. Bootstrap distribution of regression coefficients

With each value A = age we compute the value of B = bmd as below

B = β̂0 + β̂1A+ β̂2A
2 + β̂3A

3

age have peak bone mineral density is

(4.3) Amax =
−β̂2 −

√
β̂2

2 − 3β̂1β̂3

3β̂3

and peak mineral density is

(4.4) Bmax = β̂0 + β̂1Amax + β̂2A
2
max + β̂3A

3
max
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Recall that, we want estimate standard deviation of Amax. Bootstrap estimator for

standard deviation of Amax is

(4.5) sd =

√
1

B − 1

B∑
i=1

(
A#i

max − Ā#
max

)2

where A#i
max is the value of the bootstrap estimator for Amax in the i th sample.

Here is R code for estimator sd.

>setwd("C:/")
>data<-read.table("data.txt",header=T,na.strings=".")
>attach(data)
#determine sample size
>n<- length ( age)
>B < -100000 #Number bootstrap
#create new object to store coefficients
>beta0 <- numeric (B)
>beta1 <- numeric (B)
>beta2 <- numeric (B)
>beta3 <- numeric (B)
# resampling
>for (i in 1:B)
{ Resample <- Data[ sample (1:n, n, replace =T), ]
y <- Resample [, " bmd "]
x <- Resample [, " age "]

fix <- lm(y ˜ x+I(x ˆ2)+I(x ˆ3))
beta0 [i] <- fix$coefficients[1]
beta1 [i] <- fix$coefficients[2]
beta2 [i] <- fix$coefficients[3]
beta3 [i] <- fix$coefficients[4]
}
>A.max<- (-beta2-sqrt(beta2ˆ2 - 3*beta3*beta1))

/(3*beta3)
>B.max <- beta0 + beta1*A.max + beta2*A.maxˆ2

+ beta3*A.maxˆ3
>sd(B.max) #The result that we need is
[1] 0.01299935
>mean(B.max)
[2] 0.933978

so the T − scpre can be compute by

(4.6) T − score =
bmd− 0.9339

0.013
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5. A CONCLUSION.

In applied statistics, the estimation methods are usually that as maximum like-

lihood estimation, non- parametric estimation,. . . . The advantage of the bootstrap

method we explore here does not need any additional assumption of distributions

and it can be used in solving problems that in the past were regarded as unsolvabil-

ity.
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